
Introduction to R

1st lecture

Alessandro FERMI – Giovanna VENUTI

Alessandro FERMI - Giovanna VENUTI

2

The R environment

R is an integrated suite of software facilities for data manipulation,

calculation and graphical display.

• It’s open source!

• It has a suite of operators for calculations on arrays, in

particular matrices

• It’s object-oriented

• It has graphical facilities for data analysis

• It consists of various packages

It has a well developed, simple and effective programming language

which includes conditionals, loops, user defined recursive functions

and input and output facilities.

Alessandro FERMI - Giovanna VENUTI

How to download R?

3

 Google it using R or CRAN

(Comprehensive R Archive Network)

 http://www.r-project.org

Alessandro FERMI - Giovanna VENUTI

R Interface
4

Starting R, the main window (RGui) with a sub window (R Console) will appear. In

the `Console' window the cursor is waiting for you to type in some R commands.

Alessandro FERMI - Giovanna VENUTI

Literature on R
5

Alessandro FERMI - Giovanna VENUTI

Using R interactively

6

Create a separate folder to hold data files and commands files used in the current session.

Then in the interface you can choose this directory as the working directory.

Alessandro FERMI - Giovanna VENUTI

R overview - I

7

You can enter commands one at a time at the console or run a set of

commands from a source file.

There is a variety of data types, including vectors (numerical, logical and

character), matrices and higher dimensional arrays, factors, lists and data

frames.

To quit R use the command

> q()

At this point you will be asked whether you want to save the data from

your R session.

All object variables and commands are stored in two files “.Rdata” and

“.Rhistory” in the working directory.

Alessandro FERMI - Giovanna VENUTI

R overview - II
8

Most functionalities can be either provided by built-in or user-

defined subroutines.

All data objects are kept in memory during a session

The R commands

• > objects() or alternatively

• > ls()

can be used to display the names of the objects.

The collection of objects currently stored is called the

workspace.

Alessandro FERMI - Giovanna VENUTI

R overview - III
9

To remove an object no longer needed, use the R function

• > rm()

E.g., if the objects x, foo and temp are in the current

workspace,

> rm(x, foo, temp)

delete them from the workspace.

Alessandro FERMI - Giovanna VENUTI

R overview - IV

10

R has a built-in help facility for getting more info about specific

functions, e.g. solve.

You may use the syntax

• > ?solve

or alternatively

• > help(solve)

Some further features on R

• it is case-sensitive

• elementary commands consist of either expressions or

assignments. If an expression is given as a command, it is

evaluated, printed and the value is lost

Alessandro FERMI - Giovanna VENUTI

R overview - V

11

• commands are separated either by a semi-colon (‘;’), or by a

newline. Elementary commands can be grouped together into

one compound expression by braces (‘{’ and ‘}’)

• comments can be put almost everywhere and have to start

with a hashmark (‘#’).

All R functions and datasets are stored in packages. Only when a

package is loaded are its contents available.

To see which packages are installed use the function

• > library()

To see which packages are loaded use the function

• > search()

Alessandro FERMI - Giovanna VENUTI

R numbers and vectors

12

The simplest data structures, which R operates on, are numbers and

numeric vectors. The latter are ordered collection of numbers.

To define a numeric vector x with specific values, the assignment

operator ‘<-’ or ‘=‘ is used; e.g.

> x <- c(2.4, 6, 8.9, 1.0, 0.0, 7.3)

Alternatively, one can use the assign() function

> assign(“x”, c(2.4, 6, 8.9, 1.0, 0.0, 7.3)).

The assignment may be done in the other direction as well

> c(2.4, 6, 8.9, 1.0, 0.0, 7.3) -> x

Alessandro FERMI - Giovanna VENUTI

R numbers and vectors

13

The further assignment

> y <- c(x, 0, x)

defines a vector with 13 entries, consisting of two copies of x with 0

in the middle.

The length of a vector can be checked through the length() function;

e.g. the commands

> l_y <- length(y); l_x <- length(x)

store the lengths of y and x, respectively, in the variables l_y and l_x.

If x is entered as a command, then its value is printed.

Alessandro FERMI - Giovanna VENUTI

Generate regular sequences

14

To generate regular sequences, R offers various facilities.

1. If the sequence c(1,2,3,4…,50) is needed, one can use the

colon operator ‘:’ , i.e.

> x1 <- 1:50

2. The function seq() is a more general facility. It has the

following arguments

1. ‘from=value’, ‘to=value’ : define, respectively, the first

and end values of the vector.

2. ‘by=value’ , ‘length=value’ : define, respectively, the step

size and a length for the sequence

3. ‘along=vector’ : normally used as the only argument to

create the sequence 1, 2, ..., length(vector), or the

empty sequence if the vector is empty.

Alessandro FERMI - Giovanna VENUTI

Generate regular sequences

15

For instance

> x2 <- seq(from=1, to=50)

is the same as x1.

Furthermore

> x3 <- seq(by=1, length=50)

is the same as x1 and x2.

Not all the names of the arguments are needed. For example

> seq(-5, 5, by=.1) -> x4

defines the vector c(-5.0, -4.8, -4.6, …, 4.6, 4.8, 5.0).

If the names of the arguments are used, then their order is irrelevant.

Alessandro FERMI - Giovanna VENUTI

Vector arithmetic

16

Vectors can be used in arithmetic expressions, in which case the

operations are performed element by element.

Example

> y1 <- 1:21

> seq(0, by=.1,2) -> y2

> aux <- length(y1) == length(y2)

> aux

[1] TRUE

> w <- 2*y1+y2^2+1

> w

The elementary arithmetic operators are the usual +, -, *, / and ^. In

addition all of the common arithmetic functions are available, e.g.

log, exp, sin, cos, tan, sqrt, max, min, range, sum, prod.

The ls() will display all vector objects created so far.

Alessandro FERMI - Giovanna VENUTI

Vector arithmetic

17

Important statistical functions available are

• mean(x) : computes the sample mean of the vector x

• var(x) : computes the sample variance of x

• sd(x) : it yields the standard deviation of x

Of course mean(x) is the same as ‘sum(x)/length(x)’, while var(x) is

equal to

‘sum((x-mean(x))^2)/(length(x)-1)’

sort(x) returns a vector of the same length of x with elements in

increasing order.

Remark: complex vectors can be defined and complex arithmetic is

available.

Alessandro FERMI - Giovanna VENUTI

Vector arithmetic

18

Example. Assume the following observations of the variables X and Y

are given:

(1,1) (1,0) (0,1) (0,2) (0,2) (1,0) (1,1) (0,2) (0,2) (1,0)

compute the table of relative frequencies, the marginal frequencies of

X and Y. Moreover, compute the relative frequencies of Y conditional to

X=0

> X <- c(1, 1, 0, 0, 0, 1, 1, 0, 0, 1)

> Y <- c(1, 0, 1, 2, 2, 0, 1, 2, 2, 0)

> v3 <- table(X,Y)

> v3

> v3 <- prop.table(v3) or v3/length(X)

> marg_X <- margin.table(v3,1)

> marg_Y <- margin.table(v3,2)

> Y_X0 <- v3[1,] / marg_X[1]

> Y_X0

0 1 2

0.0 0.2 0.8

Alessandro FERMI - Giovanna VENUTI

Logical vectors

19

R allows handling and manipulation of logical quantities.

A logical variable can have the values TRUE, FALSE or NA (“Not

Available”).

Logical vectors are generated by logical conditions.

The logical operators are <, <=, >, >=, == for exact equality and != for

inequality. In addition if c1 and c2 are logical expressions, then “c1 &

c2” is their intersection (“and”), “c1 | c2” is their union (“or”), and “!c1”

is the negation of c1

Example > l1 <- seq(to=3, from=-1)

> l2 <- seq(from=1, to=length(l1), by=.5)

> bool <- length(l1) == length(l2)

> bool

> ind_pos <- (l1 < 0)

Alessandro FERMI - Giovanna VENUTI

Character vectors

20

Character variables and strings are very useful.

They are denoted by a sequence of characters delimited by the double

quote character, e.g., "x-values“ (or ‘x-values’)

They use C-style escape sequences, e.g. ‘\n’ for a new line.

For a full list of escape sequences, one can use the help command

> ?Quotes

The paste() function takes an arbitrary number of aguments and

concatenate them to a string.

Example.

> paste(c(“X”, “Y”), seq(1,10))

> paste(c(‘X’,’Y’), 1:10, sep=“”)

Alessandro FERMI - Giovanna VENUTI

Index vectors

21

Subsets of vector elements may be selected by suitable index vectors.

For vectors they can be

• a logical vector: values corresponding to TRUE in the index

vector are selected and those corresponding to FALSE are

omitted; for instance

> (x+1) [is.na(x) & x > 0] -> z

• a vector of positive integers: the meaning is the usual one; e.g.

> seq(-5, 5, by=.1) -> x4

> i <- 10:20

> x4[i]

[1] -4.1 -4.0 -3.9 -3.8 -3.7 -3.6 -3.5 -3.4 -3.3 -3.2 -3.1

• a vector of negative integers: here the values corresponding to

the index vector are omitted

Alessandro FERMI - Giovanna VENUTI

Index vectors

22

For example

> y <- x4[-(1:51)]

> y

[1] 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9

[20] 2.0 2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9 3.0 3.1 3.2 3.3 3.4 3.5 3.6 3.7 3.8

[39] 3.9 4.0 4.1 4.2 4.3 4.4 4.5 4.6 4.7 4.8 4.9 5.0

(this is the same as x4 [x4 > 0] -> y1 (check it!))

• a vector of strings: an example make things clear

> incomes <- c(10, 15, 7.5, 9, 12.2)

> names(incomes) <- c(‘Lazio’, ‘Lombardia’, ‘Liguria’, ‘Sicilia’, ‘Puglia’)

> incomes

Lazio Lombardia Liguria Sicilia Puglia

10.0 15.0 7.5 9.0 12.2

> south_incomes <- incomes[c(‘Lazio’, ‘Sicilia’,’Puglia’)]

Lazio Sicilia Puglia

10.0 9.0 12.2

Alessandro FERMI - Giovanna VENUTI

Arrays and matrices

23

R can operate on matrices and higher dimensional arrays.

A vector can be handled as an array, if a “dim” attribute is assigned to it.

Example

> x5 <- 1:60

> class(x5)

[1] "integer"

> dim(x5) <- c(2,3,10)

> x5

> class(x5)

[1] "array"

> dim(x5) <- c(6,10)

> x5

class(x5)

[1] "matrix“

Alessandro FERMI - Giovanna VENUTI

Arrays and matrices

24

Other functions such as matrix() and array() are available for simpler and more

natural assignments.

• array() function: the general syntax is

Z <- array(data_vector, dim_vector)

For example

> x5 <- seq(by=.5, from=.5, to=12)

> Z <- array(x5, dim=c(4,6))

> Z

[,1] [,2] [,3] [,4] [,5] [,6]

[1,] 0.5 2.5 4.5 6.5 8.5 10.5

[2,] 1.0 3.0 5.0 7.0 9.0 11.0

[3,] 1.5 3.5 5.5 7.5 9.5 11.5

[4,] 2.0 4.0 6.0 8.0 10.0 12.0

Alessandro FERMI - Giovanna VENUTI

Arrays and matrices

25

Remark: if the data vector is shorter than the product of the components of

the dimension vector, then its values are recycled to match the given

dimension vector

For example

> x5 <- seq(by=.5, from=.5, to=12)

> length(x5)

[1] 24

> Z <- array(x5, dim=c(4,7))

> Z

[,1] [,2] [,3] [,4] [,5] [,6] [,7]

[1,] 0.5 2.5 4.5 6.5 8.5 10.5 0.5

[2,] 1.0 3.0 5.0 7.0 9.0 11.0 1.0

[3,] 1.5 3.5 5.5 7.5 9.5 11.5 1.5

[4,] 2.0 4.0 6.0 8.0 10.0 12.0 2.0

Alessandro FERMI - Giovanna VENUTI

Arrays and matrices

26

Instead of using the function array(), a matrix may be defined applying the

function matrix(); its general syntax is

M <- matrix(data_vector, n_rows, n_cols)

Example

> x5 <- seq(by=.5, from=.5, to=12)

> M <- matrix(x5, 4, 6)

> M

> M <- matrix(x5, 4, 7)

Warning message:

In matrix(x5, 4, 7) :

data length [24] is not a sub-multiple or multiple of the

number of columns [7]

> M == Z

It is always TRUE!!

Alessandro FERMI - Giovanna VENUTI

Arrays and matrices arithmetic

27

Arrays and matrices may be used in arithmetic expressions and the result is

an array/matrix formed by elementwise operations.

The dim attributes of operands generally need to be the same, and this

becomes the dimension vector of the result.

Furthermore, again all basic mathematical operations performed element-

by-element are available

Alessandro FERMI - Giovanna VENUTI

Arrays and matrices operations

28

An important operation on matrices and arrays is the outer product.

If M and Z are two numeric arrays, their outer product is an array whose

dimension vector is obtained by concatenating their two dimension vectors

(order is important), and whose data vector is got by forming all possible

products of elements of the data vector of a with those of b.

Its syntax is

> MZ <- M %o% Z

or

> MZ <- outer(M, Z, ‘ * ‘)

Remark. The multiplication function can be replaced by an arbitrary function

of two variables.

Alessandro FERMI - Giovanna VENUTI

Arrays and matrices operations

29

For example if we wished to evaluate the function f(x;y) = cos(y)/(1 + x^2)

over a regular grid, then

> f <- function(x,y) cos(y)/(1+x^2)

> x <- seq(1,2,by=.1)

> y <- seq(1,3,by=.2)

> val_mesh <- outer(x, y, f)

> image(x,y,val_mesh)

> contour(x,y,val_mesh)

(Change function and mesh!)

Example. Consider the determinants of 2 by 2 matrices with entries in the

range 0,1,...,9. The problem is to find the determinants, ad−bc, of all

possible matrices of this form and represent the frequency with which each

value occurs as a high density plot.

> d <- outer(1:9, 1:9)

> det <- outer(d, d, ‘ - ’)

> dim(det)

Alessandro FERMI - Giovanna VENUTI

Matrix operations

30

> fr <- table(det)

> fr <- fr / length(det)

> plot(fr, xlab=‘Determinants’, ylab=‘rel. freq.’)

> Fr <- cumsum(fr)

> dev.new()

> Fr <- plot(Fr)

All usual matrix operations are available in R. In particular

• Transpose: t(M)

• Determinant: det(M)

• Number of rows and columns: nrows(M) and ncols(M)

• Elementwise product: A * B

• Matrix multiplication: A %*% B

Alessandro FERMI - Giovanna VENUTI

Matrix operations

31

• A linear system of the form Ax = b, where A is a matrix and b is a

known vector, may be solved with the solve() function

> x <- solve(A, b)

To compute the inverse use the command

> solve(A)

• Eigenvalues and eigenvectors: the function eigen() computes the

eigenvalues and eigenvectors of a square (real and complex) matrix.

It returns a list, consisting of two components, namely values and

vectors.

Alessandro FERMI - Giovanna VENUTI

Matrix operations

32

Example

> M <- diag(1:5)

> eg <- eigen(M, symmetric=TRUE)

$values

[1] 5 4 3 2 1

$vectors

[,1] [,2] [,3] [,4] [,5]

[1,] 0 0 0 0 1

[2,] 0 0 0 1 0

[3,] 0 0 1 0 0

[4,] 0 1 0 0 0

[5,] 1 0 0 0 0

> evals <- eg$values

> eg <- eigen(M, symmetric=TRUE, only.values=TRUE)

> eg

THANK YOU FOR YOUR

ATTENTION!

