
Introduction to R

2nd lecture

Alessandro FERMI – Giovanna VENUTI

Alessandro FERMI - Giovanna VENUTI

2

Outline of the lecture
In this lecture we will introduce

• other specialized functions for matrix objects

• ordered and unordered factors

• R Lists and data frames

• Some R data import functions

• How to access builtin datasets

• Built in probability distributions and statistical tools in R

Alessandro FERMI - Giovanna VENUTI

Remind: arrays and matrices

3

The functions matrix() and array() are available for defining matrices and

arras in R.

• “array()” function: the general syntax is

Z <- array(data_vector, dim_vector)

Example

> x5 <- seq(by=.5, from=.5, to=12)

> Z <- array(x5, dim=c(4,6))

 “matrix()” function: the general syntax is

M <- matrix(data_vector, n_rows, n_cols)

Example

> B <- matrix(rnorm(50), 5, 10)

> B <- matrix(rexp(50), 5, 10)

Alessandro FERMI - Giovanna VENUTI

Matrix operations
4

Recall that all usual matrix operations are available in R. In particular

Transpose: t(M)

Determinant: det(M)

Number of rows and columns: nrows(M) and ncols(M)

Elementwise product: A * B

Matrix multiplication: A %*% B

Example

> nrow(B)

[1] 5

> BC <-B %*% C

> BC

Alessandro FERMI - Giovanna VENUTI

Matrix operations

5

• Recall that a linear system of the form Ax = b, where A is a matrix and

b is a known vector, may be solved with the solve() function

> x <- solve(A, b)

To compute the inverse use the command

> solve(A)

• Eigenvalues and eigenvectors: the function eigen() computes the

eigenvalues and eigenvectors of a square (real and complex) matrix.

It returns a list, consisting of two components, namely values and

vectors.

Alessandro FERMI - Giovanna VENUTI

Matrix operations

6

Example

> M <- matrix(rbinom(25, 50, 0.1), 5, 5)

> M

> eg <- eigen(M, symmetric=FALSE)

> eg

$values

[1] 25.880561+0.000000i -4.875864+0.000000i -0.166576+2.387233i

[4] -0.166576-2.387233i 1.328456+0.000000i

$vectors

[,1] [,2] [,3]

[1,] 0.5007784+0i -0.74992023+0i -0.03486211-0.04257049i

[2,] 0.3462832+0i 0.38171642+0i 0.61899510-0.12158566i

> evals <- eg$values

> eg <- eigen(M, symmetric=FALSE, only.values=TRUE)

> eg

Alessandro FERMI - Giovanna VENUTI

Matrix operations

7

• Singular value decomposition: the function svd(M) takes an

arbitrary matrix and calculates its singular value decomposition. This

consists of a matrix of orthonormal columns U, a matrix of

orthonormal columns V and a diagonal matrix of positive entries D

such that

M = U %*% D %*% t(V)

svd() returns a list with three components named d, u, v with evident

meanings.

Example

> D <- matrix(c(1,0,0,0,0,0,0,4,0,3,0,0,0,0,0,0,2,0,0,0), 4,5)

> svd(D)

$d

[1] 4.000000 3.000000 2.236068 0.000000

Alessandro FERMI - Giovanna VENUTI

Matrix operations

8

Least square fitting: the function lsfit() returns a list giving results of a least

squares fitting procedure. An assignment such as

> b <- lsfit(A, y, intercept=FALSE)

gives the results of a least squares fit, where y is the vector of observations

and A is the design matrix (without considering an intercept term).

Another interesting function for a least square solution is the qr() function.

Consider

> Xplus <- qr(X)

> b <- qr.coef(Xplus, y)

> fit <- qr.fitted(Xplus, y)

> res <- qr.resid(Xplus, y)

Alessandro FERMI - Giovanna VENUTI

Matrix operations

9

These assignments compute the orthogonal projection of y onto the range of

X in fit, the projection onto the orthogonal complement in res and the

coefficient vector for the projection in b.

Remark: even though they may be still useful, these functions have been

replaced by the statistical models features, which we will see in a

forthcoming lecture.

Example. Given the design matrix

• A = b = (10, 1, 0, 0)

Solve the least square problem using the lsfit() and qr() funtions.

[,1] [,2] [,3]

[1,] 2 3 5

[2,] -4 2 3

[3,] -1 1 1

[4,] 1 0 1

Alessandro FERMI - Giovanna VENUTI

Least square problem

10

> data <- c(2,-4,-1,1,3,2,1,0,5,3,1,1)

> Data <- matrix(data, 4,3)

> Data

> b <- c(10,1,0,0)

> lsq1 <- lsfit(Data,b, intercept=FALSE)

> lsq1

> lsq1$coefficients

X1 X2 X3

1.0925926 2.7962963 -0.1759259

> DataQR <- qr(Data)

> DataQR

> lsq1qrqr – DataQR$qr # lsq1$qr is another list!!

> par <- qr.coef(DataQR,b)

> y_model <- qr.fitted(DataQR,b)

> res <- qr.resid(DataQR,b)

> par

[1] 1.0925926 2.7962963 -0.1759259

Alessandro FERMI - Giovanna VENUTI

R factors

11

A factor is vector object used to specify a discrete classification (grouping)

of the component of a given data vector.

It has a “level” attribute.

Example. We have a sample of 30 tax accountants

> state <- c("tas", "sa", "qld", "nsw", "nsw", "nt", "wa", "wa",

"qld", "vic", "nsw", "vic", "qld", "qld", "sa", "tas", "sa", "nt",

"wa", "vic", "qld", "nsw", "nsw", "wa", "sa", "act", "nsw", "vic",

"vic", "act")

> statef <- factor(state)

> statef

[1] tas sa qld nsw nsw nt wa wa qld vic nsw vic qld qld sa

tas sa nt wa

[20] vic qld nsw nsw wa sa act nsw vic vic act

Levels: act nsw nt qld sa tas vic wa

Alessandro FERMI - Giovanna VENUTI

R factors – tapply() function

12

> c(60, 49, 40, 61, 64, 60, 59, 54, 62, 69, 70, 42, 56, 61, 61, 61, 58, 51,

48, 65, 49, 49, 41, 48, 52, 46, 59, 46, 58, 43) -> incomes

> n_acc <- tapply(incomes, statef, length)

> n_acc

act nsw nt qld sa tas vic wa

2 6 2 5 4 2 5 4

> inc_mean <- tapply(incomes, statef, mean)

> inc_mean

act nsw nt qld sa tas vic wa

44.50 57.33 55.50 53.60 55.00 60.50 56.00 52.25

To continue the previous example, suppose to have vector

Alessandro FERMI - Giovanna VENUTI

R factors – table() function

13

We already encountered the function table().

It allowed us to compute the absolute frequency distribution of one or

more data vectors.

Actually, the table() function has factors as its arguments. In case simple

vectors are applied to this function, then they are coerced to factors.

For instance

> statefr <- table(statef)

> statefr

statef

act nsw nt qld sa tas vic wa

2 6 2 5 4 2 5 4

is the same as statefr <- table(state) and to

tapply(incomes, statef, length)

Alessandro FERMI - Giovanna VENUTI

R factors – table() function

14

A pair of factors defines a two way cross classification, and so on. The

function table() allows then to compute frequency tables from equal length

factors. If there are k factor arguments, the result is a k-way array of

frequencies.

Example

> factor(cut(incomes, breaks = 35+10*(0:7))) -> incomef

> incomef

> state_VS <- table(incomef, statef)

> state_VS

statef

incomef act nsw nt qld sa tas vic wa

(35,45] 1 1 0 1 0 0 1 0

(45,55] 1 1 1 1 2 0 1 3

(55,65] 0 3 1 3 2 2 2 1

(65,75] 0 1 0 0 0 0 1 0

Extension to higher-way frequency tables is possible!

Alessandro FERMI - Giovanna VENUTI

R lists
15

An R list is an object consisting of an ordered collection of objects known as

its components.

The components do not have to be of the same type (or mode), but can be

any R objects.

Example.

Lst <- list(name="Fred", wife="Mary", no.children=3, child.ages=c(4,7,9),

name.children=c(“Tizio”,”Caio”,”Sempronio”))

The components of a list are always numbered and can be accessed

through the “[[.]]” operator,

> Lst[[1]]

[1] "Fred"

Alessandro FERMI - Giovanna VENUTI

R lists

16

Otherwise they can be named and in this case the component may

be referred to either by giving the component name as a character

string in place of the number in double square brackets, or, more

conveniently, by giving an expression of the form

> name$component_name

Example.

> Lst$name

[1] "Fred"

> Lst$name.children[2]

[1] "Caio"

> Lst$name.children

[1] «Tizio» «Caio» «Sempronio»

Alessandro FERMI - Giovanna VENUTI

R lists

17

R lists may be defined by the list() function, whose general

syntax is

> Lst <- list(name_1=object_1, ..., name_m=object_m)

Furthermore, lists can be extended with new elements; e.g.

> Lst[6] <- list(matrix=Mat)

and can be concatenated with the function c()

> list.ABC <- c(list.A, list.B, list.C)

Alessandro FERMI - Giovanna VENUTI

R lists

18

Example

 Explore the lists of the eigenvalues and eigenvectors of

a square matrix as obtained by the function “eigen()”

 Explore the lists by the functions “lsfit()” and qr()

Alessandro FERMI - Giovanna VENUTI

R data frames

19

A data frame is a list with class "data.frame".

There are restrictions on lists that may be made into data frames:

 The components must be vectors (numeric, character, or logical),

factors, numeric matrices, lists, or data frames.

 Matrices, lists, and data frames provide as many variables to the new

data frame as they have columns, elements, or variables, respectively.

 Numeric vectors, logicals and factors are included as is, and by default

character vectors are coerced to be factors, whose levels are the unique

values appearing in the vector.

 Vector structures appearing as variables of the data frame must all

have the same length, and matrix structures must all have the same row

size.

Alessandro FERMI - Giovanna VENUTI

R data frames

20

Objects satisfying the restrictions placed on the components of a data

frame may be used to form one using the function data.frame()

> accountants <- data.frame(home=statef, loot=incomes,

shot=incomef)

> accountants

A list whose components conform to the restrictions of a data frame may

be coerced into a data frame using the function “as.data.frame()”

Alessandro FERMI - Giovanna VENUTI

R data frames

21

The simplest way to construct a data frame from scratch is to use the

“read.table()” function to read an entire data frame from an external file.

R input facilities are simple and rather inflexible. The files to be read must

have already a specific form obtained by using other editors.

Input file form with names and row labels:

Price Floor Area Rooms Age Cent.heat

01 52.00 111.0 830 5 6.2 no

02 54.75 128.0 710 5 7.5 no

03 57.50 101.0 1000 5 4.2 no

04 57.50 131.0 690 6 8.8 no

05 59.75 93.0 900 5 1.9 yes

Alessandro FERMI - Giovanna VENUTI

R data frames – read.table()

22

If the file to be read has this format, then the “read.table()” function can be

used directly

> House <- read.table("houses.data")

If the row labels must be omitted, one may use the logical argument

“header” in read.table()

> House <- read.table("houses.data", header=TRUE)

Remark: there are other input functions, e.g. The scan() function, for which

we refer to the literature

Alessandro FERMI - Giovanna VENUTI

R data frames

23

To illustrate the read.table() function, let us consider the following example:

in the package “datasets” there is a data frame called “Morley”.

To check that the “datasets” package is loaded, first use the command

> search()

[1] ".GlobalEnv" "package:stats" "package:graphics"

[4] "package:grDevices" "package:utils"

"package:datasets"

[7] "package:methods" "Autoloads" "package:base"

Alessandro FERMI - Giovanna VENUTI

R data frames

24

Now to check which datasets are stored in the “datasets” package write

> data(package=”datasets”)

> morley

> filepath <- system.file("data", "morley.tab" ,

package="datasets")

> filepath

[1] "C:/PROGRA~1/R/R-2~1.0/library/datasets/data/morley.tab"

> morley <- read.table(filepath)

> morley

class(morley)

[1] "data.frame"

../../../PROGRA~1/R/R

Alessandro FERMI - Giovanna VENUTI

R data frames

25

When working with data frames or lists, the notation $ notation is not

always convenient.

For many purposes, it could be useful to make the components of the data

frame or list temporarily visible in the current workspace.

This is achieved by means of the “attach()” function, e.g.

> attach(morley)

This makes the data frame visible in the search path at position 2 (or

above) and the components can be used as variables in their own right.

Alessandro FERMI - Giovanna VENUTI

R data frames

26

More precisely, write in the console the following commands

> morley

> search()

> ls()

The data frame 'morley' is loaded, but it is not present in the search path.

Attaching it means making it visible in the search path

> attach(morley)

> search()

> ls(2)

Alessandro FERMI - Giovanna VENUTI

R data frames

27

At this point, an assignment like the following is possible

> aux <- Speed / 1000

This does not change permanently the “morley” data frame.

If permanent changes have to be stored, then one has to use the $ notation

specifying the name of the data frame.

Example

> aux <- Speed / 1000

> morley$Speed <- aux

However the new value is not visible until the data frame is detached with

the “detach()” function.

Alessandro FERMI - Giovanna VENUTI

R data frames

28

Remark. When invoked on a data frame or matrix, the “edit()” function

brings up a separate spreadsheet-like environment

for editing.

This is useful for making small changes once a data set has been read. The

command

> xnew <- edit(xold)

will allow you to edit your data set xold, and on completion the changed

object is assigned

to xnew.

Alessandro FERMI - Giovanna VENUTI

Example

29

As an example with an available data frame, let us examine its

distribution; first of all let us find the 'faithful' data frame

> data(package=”datasets”)

> faithful

> class(faithful)

[1] "data.frame"

> attach(faithful)

> ls(2)

[1] "eruptions" "waiting"

> summary(eruptions)

Alessandro FERMI - Giovanna VENUTI

Example

30

Continuing the example above, R offers a “hist()” function to display the

data of interest

> hist(eruptions)

To customize the size of the bins and make a plot of density, use the

commands

> hist(eruptions, seq(1.6, 5.2, 0.2), prob=TRUE)

> lines(density(eruptions, bw=0.1))

> rug(eruptions) # show the actual data points

THANK YOU FOR YOUR

ATTENTION!

