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Abstract
It is shown how rescaled width functions (Rinaldo et al., 1995; D’Odorico et al., 1996) are built by
means of Grass and some other custom programs. From them the width function based
instantaneous unit hydrograph, WGIUH, is obtained. In the end, it is discussed the possible
generalization of the procedure to include spatial soil moisture variability.

Width function and rescaled width function
A fundamental property of drainage networks is that there is a unique one-dimensional path,
connecting any point with the outlet (and any other point in the basin) obtained following the
steepest descent. The fraction of points at the same distance to the outlet measured along these paths
is called width function (Rodriguez-Iturbe et Rinaldo, 1997) and can be espressed as

W (x) ≡
1
A
µ{a : d(a) = x} [1]

where A is the total area of the basin which normalizes the measure, µ, of  the area, a, at distance x
(d(a)=x) from the outlet of which a  representation is given in Figure 1a. Figure 1b is the
correspondent width function.
Width functions depend on the structure of the flow paths which are known to have fractal
characteristics (Rodriguez-Iturbe e Rinaldo, 1997) and inherits from them interesting mathematical
properties which were widely studied in literature either in theoretical contexts (Rodriguez-Iturbe et
Rinaldo, 1997; Gupta et al., 1996; Veneziano et al., 2000; Marani et al., 1992; Marani et al, 1991)
or to obtain insight into the flood formation processes (Rinaldo et al, 1991; Rigon et al, 1996;
D'Odorico et al, 1998).
Due to the balancing of channel slope, geometry and roughness, the flow velocity tends to remain
constant along the network during events of the same return time (e.g. Bathurst, 1993). Thus, the
distances can be mapped into time and the distances in Figure 1(a) can be substituted by the
isochrones (e.g.,  Maione et Moisello, 1993), the points the flow of which arrives at the outlet at the
same time. The width function in Figure 1(b) is consequently mapped into the width function based
instantaneous unit hydrograph:

WGIUH(t;c) = W (x(t)) ⋅ c
x(t) = c ⋅ t

[2]

where the multiplication by the celerity, c, is necessary to maintain the correct normalization,
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dxxWdtctWGIUH . The WGIUH is the shape of the flood wave as produced by an

impulsive effective rain (Dingman, 1994). The above picture is however physically incorrect. The
runoff in hillslope is known in fact to have very slower celerities and higher residence times than
the flow in channels (Van der Tak et Bras; 1988; Emmet, 1978): the celerity of the flood wave in



channels is usually around 1-5 m/s, while the runoff in hillslope and unchannellized valleys is at
least ten times slower.

Figure 1– a) Distances from the outlet in the Renanchio (TO) watershed. Going from green to red,
the distance  increases. It can be observed that spatially  close  points can have very different
distances as shown by the abrupt variation of colors. In black the river network.. Drainage
directions in hillslopes (not drawn) are determined according to the steepest descent. b) The
resulting W(x) obtained  from the distances  shown in 1.a.

As shown in Rinaldo et al (1995) e D'Odorico et al. (1998), it is however possible to account for the
two celerities and obtain hydrologically sound results introducing a rescaled width function. Let
r=c/ch where ch is the mean celerity in hillslopes (and, as usual, c is celerity of water in channels),
first a rescaled distance, x’, is obtained by multiplying  by r times the part of distance to outlet
covered in hillslopes (red in Figure 2 for a sample point the path of which subsequently continues
along the yellow line). Thus:

hc xrxx ⋅+=' [3]
where xh and xc are the distance of the given point to the channel and the distance of the point of
flow into the channel from the outlet. Then, if we apply (1) to the rescaled distances, it is obtained
the rescaled width function (Rinaldo et al, 1995), W'(x'), which is represented for the Renanchio
watershed in Figure 3.
The rescaled width function (Figura 3) and the width function (Figure 1b) have very different
skewess: while the original width function was almost symmetric, the rescaled width function is
very left skewed and looks much more like the actual flood waves. With the application of (2), but
starting from the rescaled width function, we obtain a realistic WGIUH  which was used to
reproduce real flood events (D'Odorico e al., 1998).

The rescaled width function and discharges
In Figure 4 the rescaled isochrones relative to the rescaled width function in Figure 3 are mapped:
the isochrones follow the river network development and are more spaced in hillslopes.



Figure 2– It shows Renanchio basin in 3D with its  network. The red line is the path from an
arbitrary point to the channel and the yellow line marks the remaining part of the pathway to the
outlet. The first, red part of the path, is covered with a slower velocity than the yellow part in the

channel.

The discharge at the outlet, according to the theory of the geomorphologic instantaneous unit
hydrograph and neglecting the contribution of the subsurface flow, is:

τττ dJrctWGIUHArctQ eff

t

T )(),;(),;(
0

−= ∫ [4]

where Jeff is the effective rainfall, i.e. the rainfall minus the interception loss on vegetation cover
(infiltration in soils is usually also subtracted, but if infiltration is assumed approximately in
equilibrium with the subsurface flow into channel, it can be neglected). If we assume time invariant
WGIUH and the effective rainfall given by:
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the discharge become (Rigon et D’Odorico, 2001):
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where A(t;c,r) is the area contributing to discharge at time t.

Figure 3 – The rescaled width function for different values of  r. The value of r=1 results in the
ordinary width function.

Figure 4 – Renanchio isochrones obtained with r=10 and flood wave celerity equal to 1 m/s. The
river network is in red.



Figure 5 – Saturated areas when 10%, 20%, 50%, 90%  of the basin is saturated.

The crux of the matter of making the discharge calculated by means of (4) realistic is the choice of
the celerity c and the parameter r. Such parameters are often determined by calibration against data
coming from some events, the effective rainfall and the discharge at the outlet of which are known
(Rodriguez-Iturbe e Rinaldo, 1997; D'Odorico e al, 1996). A finer treatment of celerities would
make them an increasing function of rainfall volumes: this would make the theory non linear and
geomorphoclimatic (Rodriguez-Iturbe et al,1982a 1982b).
Therefore introduced rescaled width functions were calculated considering the whole basin area
contributing to floods formation. It is known however that this is really the special case which,
according to the modern conceptualisation of the phenomena of overland flow, is called Hortonian.
In humid areas the Dunnian case is instead common, in which runoff occurs mainly over already
saturated areas (Dunne, 1978). The Hortonian case occurs when the rainfall intensity is larger than
the soil infiltrability. A simple look at the soil saturated conductivities, as reported by hydrology
manuals (e.g. Dingman, 1994), implies that rainfalls usually easily infiltrate and only a few events
of very high return time are affected by diffuse Hortonian runoff. As a consequence most of the
runoff occurs where infiltrated water accumulates, i.e. in depressions or zones with low or absent



slope. The Dunnian phenomenology is enhanced by the fast decrease of hydraulic conductivity with
soil depth which causes the formation of a shallow water table closed to the terrain surface, the top
of which can arrive at the surface after a few rainfall events sufficiently close in time. Return flow
from up-hill can also help the increase of the soil moisture content till saturation.

Thus, an approximate but realistic representation of areas contributing to floods must collect only
those parts of the basins which are saturated. According to the TOPMODEL (e.g. Beven et Kirkby,
1979: Beven, 2001; Franchini, 1996), basin points which saturated first are those for which the
topographic index is higher:

λ−






∇

=
zb

AIT ln [7]

where A is the contributing area in each point of the basin, b a unit contour width through which the
area drains, z∇  the local slope and λ is the basin averaged )ln( zb

A
∇ . All these quantities can be

derived from DEM standard analyses (they correspond to the Grass commands: r.watershed,
r.topidx, r.slope.aspect, r.water.outlet). Figure 5 shows all  the points correspondent respectively to
the 10,50, 70 and 90 percent of the basin saturation. In fact, starting from the maps of the
topographic index, it is possible to get the probability P[IT > i] of having a point in the basin with
topographic index larger than the value i and, viceversa, we can extract those points of the map for
which, fixed the quantile q, we have P[IT > i(q)]=q. Assumed Dunnian runoff, we could hence
consider the rescaled width function relative only  to saturated points. In Figure 6 we have the
rescaled and reduced  WGIUH obtained by considering only the coloured points in Figure 5 which
are also connected with the outlet by a path made of coloured pixels. As a consequence, a different
maximum discharge will correspond to every degree of saturation.

Figure 6 – Shows the liquid discharge for a velocity ratio of 20 (c=2 m/s and ch=0.1 m/s) for
different portions of saturated areas of the basin.

The very maximum flood will occur (kept the effective rainfall fixed) obviously with the maximum
of saturated areas. In the limit of having all the basin saturated, the discharge obtained by the
Dunnian mechanism will coincide with the one obtained by Hortonian runoff,  in spite of the



different dynamical mechanism acting. A reasonable Dunnian guess is that in extreme events the
whole concave area is saturated and this reduces the maximum real discharge to less than 40% of
the Hortonian maximum discharge.

Conclusion

It is shown here how to construct rescaled width functions and the corresponding WGIUH with the
help of the Grass GIS and some custom codes. For the first time the concept of a variable area width
function depending from on the saturation degree of the basin has been introduced. It is also briefly
shown how from the WGIUH it is obtained the discharge. However users must be warned that to
obtain the state of art reproduction of flood waves, it is necessary to introduce some further
dynamic parameters in order to account for hydrodynamical dispersion (Rinaldo et al, 1995). The
custom code, which is available upon request to the authors, is being ported to GRASS soon.
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