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Abstract

A GRASS module for the evaluation of the distance subtengealfmint in the space and its normal projection
on the terrain surface has been developed. The knowleddeisoflistance allows to implement a physical
model for the description of thermally driven slope wind$ieTmodel has been derived from an extension of
a work by Prandtl, [1] - [2]. This study take advantage of tleevrGRASS 3D vector cababilites following a
previous work based on a 3D raster approach, [3]. The new GR3Bvector implementation allows users to
manage irregularly placed sets of points overcoming thd degfinition of a voxel (volume pixel) structured grid.
This paper reports, from the programmer’s point of view, titkd description of the use and the connections
between geometric primitives and their attribute data gd@mented in the GRASS 3D vector architecture. The
information required to solve the Prandtl’'s equation far thind speed are stored as attributes of a 3D vector
map and managed using the PostgreSQL DBMS and SQL queriestafed description of the GRASS module
source code is also reported. A complete description of thad¥ physiclal model and of its implementation
within GRASS can be found in [3].

1. Introduction

A new GRASS module has been written to evaluate the normtdriie between a point located in
the 3D space and a complex surface. This module meets thendergaof the atmospheric models,
such Prandtl’'s one, but it has been developed for all the@gimns in which a normal projection of
points is needed. The new GRASS vector architecture, [4]alffough higly experimental during the
module’s developement, proved to fulfill the requirementsiiis model implementation: the need of
managing points no more constrained to the a voxel grid ddiis.is useful when thicking the analysis
in particular areas of the computational domain or, morggimvhen a set of experimental measures
are known in pre-determined points (i.e. glide’s trajee®determined by GPS). The output of the
v.perp.seekmainly the three coordinates of the point to be projectied coordinates of the point on
the surface along normal projection and the normal distarare be used as a source for further data
analisys. An example is reported to show how to manage tleenv#tion collected in the external
vector database for expanding the attribute’s map.



This paper mainly focus on the tecnical aspects of the madelemetatios, such the definition
of a procedure for the evaluation of the normal distance,ctiie writing, the study, the analisys
and the use of some of the GRASS 3D vector capabilites, theitiefi of the SQL statements and
queries used to manage vector attributes and to evaluagghgfscal quantities. The description of
the Prandtl physical model and how it has been implementied) GRASS has here been omitted; a
detatiled description can be found in [3], while a more dethintroduction on the theory and on the
application filed of the slope winds can be found in [6] - [7HdB8].

2. Evaluation of the normal to a surface

Given the three coordinates of a point in the space, its nlopnagection on the terrain surface and
the measure of the normal segment have to be evaluated. Titegbe projected is one of the two
vertices of the normal segment.

Usually, the terrain surface is expressed by a raster DEdpesand aspect maps can be easily
evaluated from the DEM: the horizontal cell of the terraindalocan be tilted using these two values,
restoring for the courrent elemental the surface’s origbni@ntation.

Figure 1: Conceptual scheme of a DEM (gray) and the plane totbpolated (green)

The gradient components of the DEM can be used for the datation of the normal direction.
Anyway, the wide availability of slope and aspect informatimakes these parameters preferable.
Given a pointP in the space the terrain surface orientation parameterearsed to find its actual
projection point on the terrain surface. This procedurebmasemplified considering, as an aproximate
value of the projection point, the DEM cell that minimize thistance from the poin®.



2.1 System geometry

A point in the 3D space can be espressed as:
P =(z,y.2)p = (zp,yp, 2P) 1)
and a general scalar field may be written as:
F(x,y,2) = Az + By+Cz+ D (2)
A plane on the 3D space can be written as:
F(r,y,2)=0 €))

Moreover it has to be verified that:

Figure 2: System geometry

From equation (2) it is possible to evaluate the componehtiseogradient vector wich may be
applied to every poinf) satisfying (3).

OF (x,y,z) OF(x,y,z) OF(x,y,z

VF(z,y,2) = (A, B,C)




The plane interpolating a portion of DEM is generally unkmobut, as further explained, it is possible
to indirectly compute its gradient’s components. As a fitspsthe termD of (2) is drawn out:

D=—-Ar—By—C=z 4)

Considering the poin = (,y, 2), = (7q, yq, 2¢), as the center of the DEM'’s cell, itis possible
to write:
Q€ F(r,y,2)=0

Using the equation (4), the value bfis expressed as:
D=-Q -VF(z,y,2) = —Axzg — Byg — Czq (5)
The distance between P and the plane is:

. |A!Ep + Byp + CZP + D|
N ey :ren

Using (5) with (6) it is possible to write an expression foe thistance depending only on the unknown
vectorVF (z,y, 2).

d

(6)

_ |P-V+D| _|P-V-Q-V
VB 1 C° Il

The previous expression, rewritten using the versor rmtateads to:

(7)

d=|(P-Q)V{|
which depends on the direction identified Byand( as:

5 P-Q
TP Q

The distance is then expressed as:
d = Vi - V&||P - Q) (8)

Knowing the value of/, is simple to trace back the coordinates of the normal ptioje®f the point
P
N =P —Vid (9)

2.2 Gradient components

Althoug two of the three gradient components can be extraectty from the DTM, (using the
GRASS modula.slope.aspegtslope and aspect maps are more often used to describe #mtaari
tion of surfaces. A numeric formulation to evaluate the gratlby the former knowledge of these two
parameters has to be defined.



Knowing the two planimetric components of the gradient @gat’s quite easy to compute slope
« and asped angles using the following mathematical expression:

1
o =tan'/V2 + V;ﬁ (20)
T

180
Y = atan2(V,, V) — (11)
™
In the equation (11) the matemathic functioan2(x, y) is used. This function computes the principal
value of the arc-tangent af/y, using the signs of both arguments to determine the quadfehe
return value, [9]. Aninverted form aftan2(z, y) is necessray to estimate gradient’s components. The
reported definition is not useful: a much precise formutatgowritten below.

(tan ! (Q) x>0
atan2(y,z) = { sign(y) |7 - tan‘H%@ r<0 (12)
0 r=y=0
Lsign(y) : g r=0,y
where:
sign(x) = {1_1 ii 0 (13)

The 11 formula is only-locally invertible. The aspect vaiodicates the direction that slopes are
facing. In this study the values &f, andV, are resuming accordingly to the magnitudejof

Figure 3. System geometry



For the third component of the gradient vectat, a further analysis has to be performed. Matem-
atically speaking, the equation (3) represents an implgptesentation of the plane in the point of
interest. A simpler way to describe a plane is:

z=ar+by+c (14)

The parameters in equation (14) are computed using threaltineated points belonging to the plane.
Equation (3) needs one more point to be solved.
A new scalar field can be defined as:

fz,y) =ax + by +c

The value 0D F'/dz has to be obtained without an explicit knowledge of the () af the coefficients
of equation (3). A suitable use of the compound functionsvagion rule, [9], repays the efforts of
inferring f /0x andd f /0y without explicitly knowingf (z, y). It's here assumed that (14) defines:

Fle,y, f(z,y)] =0 (15)

thenF'(z,y, z) = 0 definesimplicitly z as function ofr andy, although it is not possible to give an
explicit formula for f (x, y). It can therefore be written as:

z= f(z,y)

A further auxiliary function can be defined as:

g(w,y) = Flz,y, f(z,y)].

Equation (15) is equivalent @z, y) = 0 and therefor@g/d0x = dg/dy = 0. These partial derivative
values can be determined using the compound functionsadiewvule:

g(l‘ay) = F[ul(x,y),uQ(x,y),u;),(x,y)]

where: u(z,y) = z, us(z,y) = y eus(z,y) = f(x,y). For semplicity, an alternative notation is
used in the following. Thg quantity is an unitary vector and thf&(a; y) is the directional derivative
function of f in a referred to they direction. In particular, ify = e, (unitary vector with the k-th
component equal to 1) the directional derivatj/éa; e,) is called partial derivative function referred
to e, and is written ad),. f (a):

Dif(a) = f'(a &)
Then, the compound function’s derivative rule gives:

dg ouy Ous Ous

r = g TP gy T s
and

@ % Ous Ous

=DF DoF—= + D F—=
By 13y+28y+33y



where the patrtial derivativ%f— and‘g—i have to be computed in the point, ¢, f(x, y)). Since

Ou _y Qup_ 0 Oug Of Oy _,
or 0 or 0 or or O oxr
dg/0xz can be written as:
OF af
%—D1F+D3Fa—x—0.

which gives:
a_f _ _DlF[xaya f(iE,y)]
afE DSF[‘Ta Y, f(fE, y)]

referred to the points whe®;F'[z, y, f(z,y)] # 0. Analogously, the corresponding formulation for
df /0y is:

a_f _ _DQF[%?J, f(xay)]
ay D3F[xayaf($ay)]
whereDsF|x,y, f(x,y)] # 0. Briefly, this formulas are usually written as:

of  OF/ox  Of _ OF/dy
or  OF/0z' 0oy  OF/0z

(16)

Referring at the same time to (16), (2.2) and (15) it can bedta

a = —

Q=

b= —

Qlw

The two mentioned scalars fields have to represent the samempaorating surface, when the local
ineversions of (11) and (10) are used with the purpose otiet@V , andV , the following expression
IS obtained:

V,=1 a7

3. Module’s implementation

The drop of the mathematic procedure, described aboveaineav GRASS module based on the new
3D vector data architecture, [4] - [5], of GRASS is now dismc

All the vector capabilities are recalled by libraries andl€alependencies: the module, during
compilation, is address byMakefileto the locations where drawing the data structures off.
G SLI B the standard GRASS libraryECTLI B the vector data management library, &&M LI B
for the attribute management give the programmer a set ohg@d functions to use in the develope-
ment phase. As suggested BRRASS Developement TearHTML manual comes with the module.



3.1 Targets

The v.perp.sseknodule has been developed for a wider range project. ThedPtaeory is refered
to a particular orthogonal frame with theaxis parallel to the slope andaxis normally defined. The
geographic data refer to a Cartesian frame withitltgrection along the horizontal plane and thim
the vertical direction.

Figure 4: Reference systems on the tilted plan modelingltpergy ground.

Then coordinate is one of the parameters used by Prandtl forrdetgrg atmospheric conditions.
The 3D module has to dart a normal segment fiBraearching the intersection with the terrain sur-
face. Knowing the spacial position of the point to projeat & normal projection, the distanegis
evaluable as:

n=+(xp—an)?+ (yp — yn)> + (2p — 2n)

However, the problem is much more complicated: the mathiemeggtresentation, through scalars
field or equivalent forms, of the surfaces describing theateris unknown. As discussed the DEM
discretization, accomplished by slope and aspect infaomatay suffice for an approximated value
of normal segment’s length.

The first aim ofv.perp.seeks to generate a 3D vector map of lines connecting the pointset
projected (read from the input 3D vector map) to the normajgmtion on DEM. In the linked table,
as attributes, for each point various information are stotiee coordinates of the point to be projected,
the distance between the two points, the coordinates ofdhmal projection, the indexes of the cell
where the projection falls, the two planimetric coordisadéthe cell in which the projection falls, the
directions of the gradient versor and the components of @wdamum slope direction.

Generally, terrain morfology is stored in DEMs: the surfecgiscontinuos, a mosaic of horizontal
planes. As seen in 82.2, the cells of DEM can be tilted andhtede using theslope and aspect
parameters. Once the gradient vector is known a richer iggiser of land is available but the resulting
surface is however discontinuos. For a complex surface ri@e one normal projections can be
found for the same point. Regarding to the atmospheric madetl and temperature conditions are
influenced mostly by the physical conditions of the nearesfegtion, so only the smallest normal
distance is considered. Where slope values rapidly changeyvaluation of the normal distance may
be complex. The vector approach allows the management ohgjeical configurations better than



the raster-voxel one (i.e. thickening the computing grityerear these zones). The definition of an
algorithm to analitically manage geometrical singulastis still under development.

Although the module was intended as part of a wider tridirmra atmospheric model, an high
grade of generality has been mantained, the module evaltreenormal projections of points either
below or above the terrain surface. Such an operation wailibm-sense in the atmospherical field
while it could be interesting in others.

3.2 Normal distance’s individuation pattern

For the points close to the surface the distance, evalutaidlde surface, between thermaland the
vertical projection can be assumed small, save for configuration gatimetrical singularities. The
determination of the vertical projection is trivial andgmoint, which minimize the distance from the
projecting point in the space, can be used as a starting favittie search of the normal projection.
The algorithm that evaluates the normal to a surface usepthposition starting from a point close
to the surface and moving towards the interesting pBiin the space.

Figure 5. Normal projection aP1 and P2. For the second point onl¥,,, has to be evaluated.

Let P : (zp,yp,zp) be the point to project. The first step is to compute the velrpcojection
V : (zv,yv, 2v), the segmenPV is divided intok parts, each with edge poink- (i) with coordinates
given by: L L L
PV PV PV
PV: (xp+i7,yp+i7,2p+i7). (18)

with 4 running from O tok, where obviouslyPy (i) = Vfori = 0, Py (i) = P for i = k and lower
values ofk correspond to points closer to the surface. The algoritlamsswithk = 1, for this point

Py (1), which is close to the terrain surface, the normal and \artizection are very close, unless the
slope is very slanting or a singularity of the surface is laed. Therefore, a window of points under
Py (1) is scanned and the distance betwégr{1) and the centers of these cells are evaluated. The
point@ : (zq, yo, zg) corresponding to the shortest distadge, = PQ can be easly found.



Figure 6: Scanning window over the DEM for the search of theimim distance point.

The versor:

%
Q- Py(1)
v, —

identifies the direction of the segment fraf (1) to ), which in general is not the normal direction
since only the cell centers are tested. For the cell to whjdbelongs, the normal direction to the
terrain surface can be evaluated knowing the DEM gradient.

o 7 ? - (vxavyavZ)
Tl
I \/VI2 +V,2+V.?

Figure 7: The terrain surface is modelled trough a DEM: ewety is tilted by the gradient vector.
The resulting surface doesn’t match the real one, thus iméing the normal projection evaluation.

If V5 = Vv, thenVg is the normal direction trougt?, (1), otherwise, as usually happens, the
distance fron1) to the normal projection N can be evaluated through (8), Misé by moving, of
the quantityd, along the directiorﬁTQ as shown in (9).

Once the pointV for Py/(1) is found, the procedure is iterated for the other 1 points. However,
after the firstiteration the poinY of the previous iteration, rather than the vertical pragcof Py (k),
is used as starting point for the search.



3.3 The code

The procedure described above has been implemented as aR®®&SSmodulev.perp.seektaking
advantage of the new GRASS vector architecture and thelplitysio link the vector attributes to a
database table, [4] - [5]. Theperp.seeknodule creates a tridimensional vector map of the segments
that connect each input point with its projection on a DEM.the vector map a database table is
associated where the following information are stored rhaacord: the coordinates of the point to
be projected, the normal distance, the coordinates of thjegtron points, the index to the DEM cell
containing the projection point, and the coordinates ofcirgter of the cell. The input of the module
consists in a vector map containing the points whose nornuak ive evaluated, the DEM, the slope
and the aspect maps. The slope and aspect information atd¢aisealuate the local gradient of the
surface. For a concave terrain surface more thane one ndireation can exist, the module select
the direction corresponding to the shortest distance.

The program, written in C language, is structured in blod¢kghe first part the external libraries
are recalledG s. h, Vect . h, anddbm . h are used for processing raster, vector and attribute data
respectively. The POSIX libramyni st d. h is disposed for the correct initialization of the table man-
agement driver.

The data structurPoi nt _3Dis then initialized as a useful way for storing every tridmsmsnal
vector entity: points, directions, vectors, and versors.

Figure 8: After evaluating the vertical projection the s#aalgorithm is started.

The uptading of the tables linked to the vector map is donehbytt i t e_| i ne function. For
clarity’s sake, this part of code is broken up from the maiarirgy module’s developement it has
represented the hard-core of the information managemeateder, an external procedure is much
more flexible when changes in the output are needed.

The first part of thamain, is dedicated to the initialization of the program and touih@ata har-
vesting. The last two parameters that must be chosemiamaeringandmaskingthe formerk andm
in the equation 3.2. Respectively, these two parametersesept the number of segments into which
the vertical segment from the point to the surface is divided the dimension, as number of cells,
of the square “neighbourhood tool” on the terrain. Theseupaters are set as a trade off between



the risk of selecting the wrong point on the surface and timeprdational cost. Infact, the choice of
large values fok increases the number of iteration during the projectioseksng, while small values
of £ can lead to situations where the hypotesis that normal arict&kedirections are close does not
hold, resulting in the failure of the algorithm. The selentif large values ofn causes the need of
scanning a large number of cells when looking to the minimistadce (the number of scanned cells
scales withn?), however a small value of. can lead to the individuation of a local minimum for the
cells’ centers-point distances, which is not the absolutgamum, resulting again in a failure of the

procedure.

given a point calculates the normal projection on a DTHM and the distance.

Input map with points to be projected (string, required):

= ||punti

Qutput map containing projection information (string, required):

linee

Input elevation map (string, required):

» dtm

Hame of SLOPE input file {string, required):

= ||slope

Hame of ASPECT input file (string, required):

» ||laspect

Humber of iteration on vertical projection {integer, required):

3

Size of the computing window (integer, required):

3

ten.rocessing line 1 of 3 ... done
Processing line 2 of 3 ... done
Processing line 3 of 3 ... done

Registering lines:
3 primitives registered
Building areas: X}
0 isles built
Attaching islands:

Attaching centroids:

Humber
Humber
Number
Humber
Humber
Humber
Humber
Humber

of nodes

of primitives:

of points
of lines

of houndariesg
of centroids

of areas
of isles

Run

% 66%100%0 areas built

33% 662100%
3

[ e e e S W e Y

Help Close

Figure 9: Module’s input window.

Aftre parsing, the variabléype =
vector primitive input, reading and processing only thenpoivhich make them up.
From line 195 to 199, the vector structures needed for rgadiita inputs and write data outputs are

GV_PA NT is set. This allows module to process every



recalled: at line 219 the header of the table linked to veentities is set:
Cat : category indexifitegen;

xP, yP, zP : point to project ouble precisioj

distance : normal distancedouble precisioj

XN, yN, zN : projection point double precisiol

cell : cell index where projection fallsr{tegen;

x_cell, y_cell : index cell's baricenterdouble precisio)y

vg_X, vg_y, vg_z: gradient versordouble precisio)y

vNn_X, vn_y, vn_z: max slope versorpuble precision

Figure 10: Theoric and effective projection’ comparison.

From line 202 to 210 the vector input map is open at 2nd level dll topology is imported. The
output map is then created and the header and history filearéten. Linked tables’s creation is
preceded by creation of tHesld and of the link to the table into the field. This may seem such a
complication, but it is the only way to manage more table il fand to link the field (with all tables
into) to a vector map. A series of functions do this job:
fi = Vect _default field_ info(&ector_map_new, 1, NULL, GV_1TABLE)
initialized a new database with a table into it and links itte vector output map.

Then

Vect _map_add_dbl i nk( & ector_nmap_new, 1, NULL,

fi->table, "cat", fi->database,fi->driver)

sets the database driver. The default driver is the GRAS®ate, dbf, and it opens the database for
writing with:

driver = db_start _driver_open_dat abase(fi->driver, fi->database)



The vector map can now be written and the tables in the fieldbegropulated. Every time a primitive
is added the table in the field will be updated.

From line 228 to line 262 the raster data imput map are opefuftrer reading. With
G get _cel I hd(dt m nane, dtm mapset, &eader)
the limit of the maps are rekoned and information about rgswi of maps are harvested.

From line 228 to line 451 the core of the discussed algoritbnfihding the projection is imple-
mented: every vector point is processed until the projeitiooordinates and all the related data are
ready to be written to the output vector map.

The two planimetric coordinates of the point to project areugh to identify the memory address
of the raster cell on wich the vertical projection falls ¢(frdine 283 to 291).

The storage of raster data can be achieved in two ways: wathrémscription to memory of the
whole map or copying small noticeable portion of the map withamic allocating memory routines
and freeing the RAM space when data are no longer needed. thi¢iteecond approach machine’s
resources are optimized. So, the reading is made pointengght cell on the map accordingly with
thej unp_x andj unp_y values. As far as raster informations are collected in antiliway a
check on the typology of data is always made (from line 28692 &t sim.). Then the algorithm
implementation starts, restrained from line 306 to 309 dbdoop goes up or downward the vertical
(accordingly tog_wt s value) finding intermediate projections. The controldamntinues until the
while loop
while (pov.z !'= ptp.z)

Is satisfied.

Figure 11: Distance analysis in the computing windoRC') is compared with gradient’s versor.

The DEM information collected in the window-matrix are pessed to detect the minimal distance



(lines 354-364); the cell is indexed and the center’s comtgis evaluated, the directim with the
v, is computed. Starting witf)’s coordinates, slope and aspect values are computed 88@&401)
and theV, e V, are evaluated (lines 402-433). Consequently, knowjjdghe equations (8) and (9)
are used to find the normal distance and the projection’sdtoates. Moreover, the maximum slope
versorm is evaluated as:

m-V=0

my = —V,
my = —V,
Vi+V:

V.,

When: = k, the projection ofP is found and all the information are stored in the map and¢o th
linked table bywr i t e | i ne procedure. The debug level is set to the third level with:
G debug(3,"wite_line ()") sothatevery line in the vector file is checked for errors. The
vector map is then prepared for being written wict _reset | i ne() andVect _reset _cats().
The Vect _append_poi nt () stores the coordinate accomplaining the GRASS 3D vecta dat
structure and finally withivect _write_|i ne() a primitive GV_LI NE (a line) is written into a
new line of theOQut map. The table is then written and debugged with:
db_execute_i medi ate(driver, &sql)!=DB K
When all the points in the input maps have been processegrdiedure for closing the files and for
de-allocating memory are called (lines 460-271).

m, =

' ' fabio@localhost fhome/fabio - Shell - Konsole

Sessione Modifica Visualizza Segnalibri Impostazioni Aiuto

GREASS 5.7 .-cws:™ » w.perp.seek --help

Description:
given & polnt calculates the normal projectlon on a DTM and the distance.

Ugage:
Ww.peErp.sesk lnput=name output=name map=name lnput_slope=name
input_aspect=name trimmer=value window=wvalue

Farameters:
input Input map with polints to be projected
output Output map contalnlng projection informatlon
mag Input elewvation map
input_slope Mame of SLOFPE input file
input_aspect Mame of ASFECT input file
trimmer Mumber of iteration on vertical projection

default: 3
window Size of the computling window
default: 3
GRASS 5.7.-cve:™ > +

L[

Figure 12: Video help of.perp.seek



4. Discussion

4.1 Simple geometry

During module’s tests and debug a series of plane geometnry ieestigated. An example is here
reported.
On a plane defined as:
3 1
=75 —x— 2=
‘ 495 2y

a set of points was projected. The module’s results were aoedpwith theoric values obtained from:

_ |Axp + Byp + CZP + D|

d (19)

Figure 13:nvi z rendering of the module output. Both above and under theephgre considered.

Tables (1) and (2) report the results of the comparison, th@&lserrors that appear are due to
computation and troncation errors. When a vector map isalied, it is possible to inquire, with
mouse-clicking, the primitive of interest obtaining therresponding record of the database table
linked to the vector map, as shown in figure (14).



Table 1: Comparison between model’s and theoric results.

point| xp wyp zp d TN YN ZN
1 37 73 50| 29.154164 | 20.758617 62.172399 28.344844
2 32 25 90| 38.253242 10.689646 10.793081 61.586222
3 70 34 100| 70.192838 | 30.896537 7.930995 47.862099
4 50 50 -40| 38.996023 | 71.724147 64.482781 -11.034498
pOint rp Yp Zp dicor T Nteor YNteor ZNteor
1 37 73 50| 29.15416809 20.75862069 62.17241379 28.34482758610
2 32 25 90| 38.253239664 10.68965517 10.79310345 61.58620689641
3 70 34 100| 70.19283783 30.89655172 7.931034483 47.86206896525
4 50 50 -40| 38.99602102 71.72413793 64.48275862 -11.03448275847
Table 2: Absolute errors
point | errgs erryN erryN erryN
1 -4.09E-06| -3.69E-06 -1.48E-05 1.64E-05
2 2.34E-06 | -9.17E-06 -2.24E-05 1.51E-05b
3 1.69E-07 | -1.47E-05 -3.95E-05 3.00E-05
4 1.98E-06 | 9.07E-06 2.24E-05 -1.52E-0b6
Fle Options Help L
WED A nERES%L | DEHE map: Tinee

Tw +/[vector1

Veclor name: h\mee

Symbol:[kasic/circie

-] size: [5

el

Display: W shape W calegory W topology & direclion W atiribute
Type: _i point i fine & boundary M centroid W area | face
Line color: [ll Fill color: ] @ fill areas  Label color: [l

Field |1 Label FIEMI1 Lahel xpus%leﬂ

Attribute col |

| Lahel ypos center =/
Label size: [Ei =

Category |

SGL query |
_| Print query output as text in terminal

Create new file

_| use query

Display constraints: Min Max region size

mapset piano’

feature type: Line

length: 38.996023

Line height min: -40,000000 ma=: -11.034498

field: 1

category: 4

driver: dbf
database:
/home/fabio/Documents/gis/test/plano/dbiy
table: linee

key column: cat
cat : 4

xP : 50000000
vP : 50000000
zP : -40.000000
distance : 38996023
XN : 71724147
N : 64482781
ZN : -11.034498
cell : 38

x cell : 75000000
v cell : 65000000
vg x : 0.557088
vg y: 0371321
ve z @ 0742781
vn x: -0.618031
wvn y: -0412021
vn z : 0669535

Figure 14: Map inquiring in real-time




4.2 Complex geometry

As for the raster-voxel apprach, [3], also the vector modes tested on an synthetic terrain surface
and the results were compared using a vector grid reprogtice\GRASS 3D-raster one. A structured
grid, like voxel’'s one, can be easily reproduced in the veafproach, (some programs to produce
grids of points in GRASS-like format have been developedieyauthor). The vector model supplies
an higher grade of freedom is available: unstructured gritimegular structured grid can be managed
to fulfill user’s needs.

Although the approach, both geometrically and computatlgnis quite different, the distance
evaluated with the3.isosurfmodule were identical with those outputtedbgerp.seeknd discussed
here.

Figure 17 reports a side-effect of using the Horn’s methael/duater e ¥ with ther.slope.aspect
module. On the horizontal plane, some normals, which shbeldertical, are actually inclinated.
During the derivative’s calculation, the 2nd-order diffeal operator really debars the cell in wich the
values have to be evaluate, and considers some cell wictoah®rizontal. This lead to an "apparent
slope" effect blunting the DEM and inclining the normal segn

Figure 15: DEM used and lines normal to it's surface. WS pofrview.



Figure 16: DEM used and lines normal to it's surface. NE pofntiew.

Figure 17: Blunting effect of the derivative Horn’s method.



5. Managing tables with PostgreSQL

In the implementation of the thermally driven wind’s phydimodel, the normal distance is only one
of the parameters used by Prandtl to describe the air fluxeslelils are given in this paper regarding
the complete formulation of the Prandtl theory, [1] - [2]h#s to be noted that the terrain features (i.g.
coverage, temperature) strongly influence the developofestbpe winds. In the Prandtl formulation
the terrain influence is modeled through thigparameter that has to be evaluated on the entire terrain
surface. This information is used to compute the wind véjocin this work the Prandtl equation
for the wind velocity is implemented using SQL capabilitissce all the parameters involved in the
model are considered as vector attribute and managed ufdMMesS. The native GRASS tables are
built with anxdBdriver. Some of the SQL functionalities required to the maaplementation were
not availble in GRASS during the work development and thad?eSQL DBMS has therefore been
used. At the time of writing the GRASS SQL functionalitieg anore complete. Conceptually the
procedure developed and reported below and based on Pe&igrean also be followed using the
internal GRASS database driver and the SQL funcionalitrggemented within GRASS.

A back-step is here necessary: the raster data are notlgireatl by DBMI. They can be made
disposable transforming the raster map in a 3D-vector migyg tiser.to.vectmodule. For each center
of the cell the value of the raster is set as an attribute. @cgdch point to be projected, the C value
where the projection falls is needed. In the database litkele vector C map is searched only the
record that satisfy:

cell,, = catc

Knowing theC values the Prandtl's equations can be easilly solved. WHetheapoints will be
processed the table is ready for being imported in GRASShagai

A simple step-by-step scheme describing how the Prandtehttas been implemented coupling
GRASS and PostgreSQL capabilities is reported.

- Export GRASS database to another DBMI without changindittks to the vector map;
- use the values stored in the table to evaluate wind and textype;
- add the results to the existing table;

- import into GRASS the new table and linking it correctly vthe vector map.

From the point of view of Prantl’'s model the scheme followsd i
- from the point to project, the normal direction is darted, fer p. seek);
- where projection falls the value df is read (PostgreSQL);

- Prandtl equations are solved.



First the PostgreSQL database has to be created and itsl\wetwver initializated for DBMI's data
management. Then, in GRASS, the table obtained usipeyp.seeks copyied into PostgreSQL’s
database transforming tixeBfile in apg one.
db. copy fromdriver=dbf from database=/ GRASS/ dbf
fromtabl e=projections to_driver=pg to_dat abase=Prandtl to_tabl e=n

In the same way, th€' raster is first transformed in a 3D vector map and then imdonéostgr-
eSQL:
r.to.vect input=C rast output=C vect feature=point

db. copy fromdriver=dbf from database=/ GRASS/ dbf from tabl e=C vect
to_driver=pg to_database=Prandt| to_tabl e=C

At this point, the data are used in the Prandtl’s equationgh& PostgreSQL's query is built:
CREATE TABLE wi nd
AS SELECT n.cat, (C. value*exp(-n.distance/elle)*cos(n.distance/elle))
AS delta_theta, (C. value*sqrt(g*beta*nu_h/nu_k/tau)*
*exp(-n.distance/elle)*sin(n.distance/elle))
AS ws, (C value*sqgrt(g*beta*nu_h/nu_k/tau)*
*exp(-n.distance/elle)*sin(n.distance/elle)*n.w nd_x)
AS ws_x, (C value*sqrt(g*beta*nu_h/nu_k/tau)*
*exp(-n.distance/elle)*sin(n.distance/elle)*n.w nd_y)
AS ws_y, (C value*sqrt(g*beta*nu_h/nu_k/tau)*
*exp(-n.distance/elle)*sin(n.distance/elle)*n.wi nd_z)
AS ws_z FROM n, C WHERE C. cat=n.cell;

The created table is then imported to GRASS:
db. copy fromdriver=pg from dat abase=Prandt| fromtabl e=wi nd
to_driver=dbf to_database=/ GRASS/ dbf to_tabl e=wi nd

The table nameavind is now in the GRASS database and it has to be linked to the vewp.
First the old table is disconnected.
v. db. connect map=proj ections driver=dbf
dat abase=/ GRASS/ dbf t abl e=projecti ons key=cat field=1 -d
and the vector map is added:
v.category input=projections output=w nd option=add fiel d=2

v. db. connect map=proj ecti ons driver=dbf
dat abase=/ GRASS/ dbf t abl e=projecti ons key=cat field=1

v. db. connect nmap=proj ections driver=dbf database=/ GRASS/ dbf
t abl e=wi nd key=cat fiel d=2



Wagnerines 1

map: ‘Wagnerlines' —
mapset: 'GRASS'

feature type: Line

length: 9.212487

Ling height min: 13.207 853 max: 20,000000

field: 1

category: 1

driver: dbf
database! home/fabio/Documnents/gis/mappe/GRASS/dbf
table: Wagnerlines
key colurmnn: cat
cat : 1

xP : 12620000

yP : 14.710000

zP : 20.000000
distance : 9212467
xN : 18913849
yN @ 14710017
zN : 13207853
cell : 459

x cell : 18.500000
y cell : 14,500000
grad x : -0.575590
grad v : -0.000002
grad z : 0737278
wind x : 0737278
wind v : 0.000002
wind z : 0675590

field: 2

category: 1

driver: dbf

database: /home/fabio/Documents/gis/mappe/GRASS/dbt
table: wagnerwind

key colurmnn: cat

cat : 1

delta thet : 4285082

ws @ 5840108

ws x : 4305783

ws v : 0000012 —
ws Z @ 3945518

- =

Figure 18: Visualization of the new data developement.

The result is shown in figure 18. Clicking on the map a tabletaioig projection, wind and
temperature data opens. The figure (19) reports a 3D vistializof the wind stream traces where the
colors are given by temperature magnitude.



Figure 19: Steam traces of wind. Color is given by tempeeatur

6. Conclusions

A physical model for the description of thermally drivengtowinds has been successfully imple-
mented using the GRASS GIS. A GIS supplies a proper environfioe the development of local
atmospheric models allowing the management of referemdedmation and the integration of mod-
els’ results into wider enviromental analyses.

The physical model is based on the Prandtl formulation, [2],-which allows to evaluate the wind
velocity and the air temperature in the first meters (appnaxely 100 m) of the atmosphere over the
terrain surface. Some information related to the terraifase, as coverage and solar radiation, and the
distance of the air particle from the surface, measuredgaloedirection normal to the terrain surface,
are the main quantities the Prandtl equations depend os. pHper reports a detailed description of
the algorihtm defined to evaluate the normal distance ofatjpothe space and how this algorithm has
been implemented in a new GRASS modulger p. seek. The module takes advantage of the new
GRASS vector model which supplies a powerful environmettli@ implementation and the study



of three-dimentional physical models. The GRASS GIS cdjigisi to managed three-dimentional
vector entities, to link vector attributes to databasedasiind to perform SQL statements and queries
constitute a very powerful and flexible tool in performingyigamental analyses.

In [3] the Prandtl physical model is reported in detail alovith the description on how the model
had been implemented following a raster approch based cBR#SS 3D raster functionalities. The
comparison, in terms of computational weight and usagebiléyi between the 3D raster approach
and the 3D vector approach, reported in this paper, can bedfou[10]. Briefly, depending on the
model and on the geometry of the involved domain, it is pdesdchoose between the raster and the
vector approach. For regular domains the raster approamlissbetter computational performance
while the vector approach is a more flexible solution in mamggregular grids of points.
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Source code

1
2
3
4
5
6

13

IR EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEREEEEEEEEEE

dat e
copyri ght
emai |

MODUL E

PURPOSE

vectorinvectorout.c - description
sep 04 2004
(C) 2004 by fabio
fabi o@ ocal host

v.perp.seek -- Gven a set of points, finds
their the normal projection on a DTM and the
di stance colleting informations in a |inked
tabl e( GRASS 5. 7)

A general nmodule to find nornal projections
using GRASS 5.7 3D _vect capabilities

LRSS SRR R R AR R R R R EEEEEEEE Rl

IWAEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEREEEEEEEEEEEEEEEEEEES

15
16
17
18
19
20
21
22

*

This programis free software; you can redistribute it and/or nodify
it under the ternms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or

with GRASS for details.

*
*
*
* (at your option) any later version. Read the file COPYING that cones
*
*
*

LR EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEREEEEEEEEEEEEEEEEEEEEEEEEEEEEEY

#i ncl ude <stdio. h>
#i nclude <stdlib. h>
#i ncl ude <string. h>
#i ncl ude <ctype. h>
#i ncl ude <nmath. h>

#i ncl ude <unistd. h>/*necessary to db_start_driver()*/
#include "gis.h"/*library for accessing the database*/

#i ncl ude "Vect.h" /*ANSI
#i ncl ude "dbm . h"

#define withz 1
#define Pl 3.14159265359
#define MY_NULL -999.

struct Point_3D

{
doubl e east;
doubl e north;
doubl e z;

b

prototypes for the lib/vector/Mib functions*/

static struct line_cats *Cats;
static struct line_pnts *Points;

static int point_cat;
static dbString sql;
static dbDriver *driver;



46 static struct field_info *fi;

47 void wite_line(struct Map_info *Qut, double x1, double yl, double z1, double x2,

48 doubl e y2, double z2, int point_cat, double distance, int cell, double x3, double y3,
49 doubl e grad_x, double grad_y, double grad_z, double w x, double w_y, double w z)

50 {

51

52

char buf[2048];

G debug(3,"wite_line ()");

Vect _reset_|ine(Points);

Vect _reset_cats(Cats);

Vect _append_poi nt (Points, x1, yl, zl);
Vect _append_poi nt (Points, x2, y2, z2);
Vect _cat _set(Cats, 1, point_cat);

Vect _wite_line(Qut, GV_LINE, Points, Cats);
db_zero_string(&sql);

sprintf(buf,"insert into % values ( %, %f, %f, %f, %f, %f, %Bf, %f, %, %Bf,
fi->table, point_cat, x1, y1, zl1, distance, x2, y2, z2, cell, x3, y3, grad_x, grad_y,

db_append_string(&sql, buf);

i f(db_execute_i medi ate(driver, &sql) != DB_OK)

{

G war ni ng("Cannot inser new row. %", db_get_string(&sql));
}

poi nt _cat ++;

}

int main(int argc,char **argv)

{

struct Gvbdul e *nodul e;

struct Option *outvect, *DIM n, *slopein, *aspectin, *trinmmerin, *maskin, *invect;
doubl e trimer;

int mask;

char *dtm nane, *slope_nane, *aspect_nane;

char *dtm napset, *slope_napset, *aspect_mapset;
RASTER_MAP_TYPE dt m type, sl ope_type, aspect_type;

int i, n_el, j;

char buf[1024];

int dtmfd, slope_fd, aspect_fd;

struct Cell _head header;

int n_rows, n_cols;

float rows_res, cols_res;

float north, south, east, west;

void *dtmraster, *slope_raster, *aspect_raster, *pointer;
struct Point_3D ptp, pv, pov, pq, PN;/*points*/

int junmp_x, junmp_y, junp_x_g, junp_y_g, pointer_row, pointer_col;
doubl e tracer;

struct Point_3D **pod;/*matri x of points*/

doubl e **di st ance;

doubl e di st_mn, norma, normal _distance, norma_ms;

struct Point_3D direction, versor_d, versor_r, gradient, versor_g, ms, versor_n;/*vectors*/

doubl e g_wt;

doubl e sl ope, aspect;

char *vector_mapset;

struct Map_info vector_map_ol d, vector_nmap_new,
int field,

int line,nlines;

struct line_cats *LCats;



100
101
102
103

104

105
106
107
108

109
110

111
112

113
114

115
116
117
118
119
120
121

122
123
124
125
126
127
128

129
130
131
132
133
134
135

136
137
138
139
140
141
142

struct i
int type;

int cell_

doubl e x_

Ggisinit

nodul e =
nmodul e- >d
"given a

ne_pnts *LPoints;
on_dtm
cell, y_cell;

(argv[0]); /*GRASS initialization*/

G _define_nodul e();
escription=
poi nt cal cul ates the normal projection”

"on a DTM and the distance.";

invect = G define_standard_opti on(G_OPT_V_I NPUT);

i nvect->description = "lInput map with points to be projected”;

outvect = G define_standard_option(G OPT_V_OUTPUT);

out vect - >description = "Qut put map containing projection information”;

DTM n = G define_standard_opti on(G OPT_R MAP);

DTM n- >description = "I nput elevation map ";

sl opein = G define_option();

sl opei n- >key = "input_sl ope";

sl opei n->descri ption = "Name of SLOPE input file";
sl opei n->type = TYPE_STRI NG

sl opei n->required = YES;

sl opei n->nul tiple = NG

sl opei n- >gi spronpt = "old,cell,raster";

aspectin = G define_option();

aspecti n->key = "input_aspect";
aspectin->description = "Nanme of ASPECT input file";
aspectin->type = TYPE_STRI NG
aspectin->required = YES;

aspectin->nultiple = NG

aspecti n->gi spronpt = "old,cell,raster";

trimerin = G. define_option();

trimrerin->key = "trinmer";
trinmrerin->description = "Nunber of iteration on vertical
trimrerin->type = TYPE_| NTEGER;
trimrerin->required = YES;

trimrerin->nultiple = NO

tri mrerin->answer ="3";

maskin = G define_option();

maski n- >key = "wi ndow";

maski n- >descri ption = "Size of the conputing w ndow';
maski n- >t ype = TYPE_| NTEGER;

maski n- >r equi r ed = YES;

maski n->mul tiple = NG,

maski n- >answer ="3";

proj ection”;



143
144
145
146

147

148
149
150
151

152
153
154
155
156
157

158
159
160
161
162
163

164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181

182
183
184
185
186
187
188
189
190
191

i f(G_ parser (argc, argv))

exit (EXI T_FAI LURE) ;

sscanf (trinmerin->answer, "% f"
sscanf (maski n- >answer, "%", &mask);

, &rimer);

type = GV_PONT;//set the primitives to be read as points

if(trimmer <= 1)

G fatal _error("The nunber of it
if(mask <= 1)

G fatal _error("The di mension of the nei ghborhood tool has to be >1\n");

eration has to be >1\n");

/*vector geonetry-table read-wite initialization*/
Cats = Vect_new cats_struct();
Poi nts = Vect_new_|line_struct();
LCats = Vect_new cats_struct();
Vect _new |ine_struct();
db_init_string(&sql);

LPoi nts

/ *vector processing*/

vect or _mapset

i f(vector_napset == NULL)
G fatal _error("Vector file [%] not available\n", invect->answer);
Vect _set _open_Il evel (2);

Vect _open_ol d( &ector _map_ol d,

= G find_vector2(invect->answer, NULL);

i nvect - >answer, vector_nmapset);

Vect _open_new( & ect or _map_new, outvect->answer, w thz);

Vect __init_head(&vector_map_new);

Vect _hi st _comand( & ect or _nap_new) ;

/*writes command info on history file*/

fi = Vect_default_field_info(&ector_nmap_new, 1, NULL, GV_1TABLE);
/*get default information about
Vect _map_add_dbl i nk( & ector _map_new, 1, NULL, fi->table, "cat", fi->database, fi->driver);
/*add new db connection to map info structure*/

driver = db_start_driver_open_database(fi->driver, fi->database);
if(driver
G fatal _error("Cannot open database % by driver %", fi->database, fi->driver);
sprintf (buf, "create table %
db_append_string(&sql, buf);

i f (db_execute_i nmedi ate(driver,

{

== NULL)

link to database for new db |ink*/

( cat int, xP double precision, yP double precision,

&sql)!= DB_OK)

db_cl ose_dat abase_shut down_dri ver (driver);
G fatal _error("Cannot create table: %", db_get_string(&sql));

}

/*raster processing*/
dt m_nane

dt m_mapset

= DTM n- >answer ;

i f(dtm mapset == NULL)

G fatal _error("DIMfile [ %]

= G find_cell2(dtmnane, NULL);

not available\n", dtmnane);

if((dtmfd = G open_cell_old(dtmnanme, dtm mapset)) < 0)

G fatal _error("Not able to open DTMraster <%@s>\n", dtmnanme, dtm mpset);
G get _cel | hd(dt m nane, dtm napset, &header);

n_rows = header.rows;/* nunber of rows in the data */

n_cols

header. col s;/* nunber

of colums in the data */

zP doubl e preci sion,

(



192 rows_res = header.ns_res;/* North to South cell size */
193 cols_res = header.ew_ res;/* East to West cell size */
194 north = header.north;/* coordi nates of |ayer */

195 sout h = header. sout h;

196 east = header. east;

197 west = header. west;

198 dtmtype = G raster_nmp_type(dt mnane, dtm nmapset);

199 dtmraster = G all ocate_raster_buf(dtmtype);

200 sl ope_nane = sl opei n->answer;
201 sl ope_mapset = G find_cell2(sl ope_nane, NULL);
202 i f (sl ope_mapset == NULL)

203 G fatal _error("slope_file [%] not avail abl e\n", sl ope_nane);

204 if((slope_fd = G open_cell_ol d(sl ope_nane, slope_mapset)) < 0)

205 G fatal _error("Not able to open slope_raster <%@s>\n", slope_nanme, slope_napset);
206 sl ope_type = G raster_nmap_type(sl ope_name, sl ope_mapset);

207 slope_raster = G all ocate_raster_buf (sl ope_type);

208 aspect_nanme = aspecti n->answer;

209 aspect_mapset = G find_cell2(aspect_nanme, NULL);

210 if(aspect _mapset == NULL)

211 G fatal _error("aspect_file [%] not available\n", aspect_nane);

212 if ((aspect_fd = G open_cell _ol d(aspect_nane, aspect_napset)) < 0)

213 G fatal _error("Not able to open aspect_raster <¥%s@s>\n", aspect_nane, aspect_mapset);
214 aspect_type = G raster_nmap_type(aspect_nane, aspect_napset);

215 aspect _raster = G all ocate_raster_buf (aspect_type);

216 /*point acquiring and devel openent of data*/
217 point_cat = 1,
218 nlines = Vect_get_num.lines(&ector_map_ol d);

219 for(line = 1; line <= nlines; l|ine++)

220 {

221 int ltype, line_cat;

222 G debug(5, "line = %", line);

223 printf("Processing line %d of % ...",line,nlines);

224 Itype = Vect _read_|ine(&ector_nmap_old, LPoints, LCats, line);
225 if(!(ltype & type)) continue;

226 Vect_cat_get(LCats, field, & ine_cat);

227 ptp.east = LPoints->x[0];

228 ptp.north = LPoints->y[0];

229 ptp.z = LPoints->z[0];

230 junmp_x= floor((ptp.east-west)/cols_res);

231 junp_y= n_rows-ceil ((ptp.north-south)/rows_res);

232 /*building the vertical projection*/

233 pv.east = ptp.east;

234 pv.north = ptp.north;

235 G get_raster_rowdtmfd, dtimraster, junp_y, ditmtype);
236 pointer = dtmraster;

237 pointer = G.incr_void_ptr(pointer, junp_x*Graster_size(dtmtype));
238 switch(dtmtype)

239 {

240 case CELL_TYPE: pv.z = (double)*((CELL*) pointer);break;
241 case FCELL_TYPE: pv.z = (double)*((FCELL*) pointer);break;
242 case DCELL_TYPE: pv.z = (double)*((DCELL*) pointer);break;
243 default: pv.z = MY_NULL;

244 }

245 if ( pv.z >= ptp.2z)

246 {

247 gw = -1.;



248 }

249 el se

250 {

251 g.w = 1.;

252 }

253 tracer =(ptp.z-pv.z)/trinmrer;

254 n_el = 1,

255 direction.east = 0.;

256 direction.north = 0.;

257 PN. east = pv.east;

258 PN.north = pv.north;

259 /*going up- or downward the vertical until matching PTP*/
260 do

261 {

262 pov.east = pv.east;

263 pov.north = pv.north;

264 pov.z = pv.z+n_el *tracer;

265 /*pl aci ng every nei ghbourhood tool directly in the |ast nornal projection*/
266 junp_x= floor((PN. east-west)/cols_res);

267 junp_y= n_rows-ceil ((PN. north-south)/rows_res);

268 if((masky2) == 0)

269 mask++;

270 pod = (struct Point_3D**)G mall oc((signed)(nmask*si zeof (struct Point_3D*)));
271 for (i = 0; i <= (mask-1); i++)

272 {

273 pod[i] = (struct Point_3D*)G nall oc((signed)(mask*sizeof (struct Point_3D)));
274 for (j = 0; j <= (mask-1); j++)

275 {

276 pod[i][j].east =(junp_x-0.5*mask+j +1)*rows_res;

277 pod[i][j].north =(n_rows-junp_y+0.5*nmask-i-1)*cols_res;

278 if((pod[i][j].east < east && pod[i][j].east > west) &&(pod[i][j].north < north && pod[i][j].north > south)
279 {

280 G get_raster_rowdtmfd, dtmraster, junp_y+i-(int)floor(nask/2.), dtmtype);

281 pointer = dtmraster;

282 pointer = G.incr_void_ptr(pointer, (junp_x+j-(int)floor(mask/2.))*G raster_size(dtmtype));

283 switch(dtmtype)

284 {

285 case CELL_TYPE: pod[i

1[j1.-z = (doubl e)*((CELL*)poi nter); break;
286 case FCELL_TYPE: pod[il][]
i1l

= (doubl e) *(( FCELL*) poi nter) ; br eak;
= (doubl e) * (( DCELL*) poi nter) ; br eak;
L;

287 case DCELL_TYPE: pod[
288 default: pod[i]l[j].z

289 }

290 }

291 el se

292 pod[i][j].z = MY_NULL;
293 }

294 }

295 di stance =(doubl e**) G mal | oc((si gned) (mask*si zeof (doubl e*)));

296 for(i = 0; i <= (mask-1); i++)

297 {

298 distance[i] = (double *)G nmall oc((signed)(mask*sizeof (double)));

299 for(j =0; j <= (mask-1); j++)

300 distance[i][j] = sqrt(powm (pod[i][j].east-pov.east),2.)+pow (pod[i][j].north-pov.north),2.)+pow( (pod[i][]j]
301 }

302 /*finding the m ni numdi stance*/

303 pointer_row = (int)(floor(mask/2.));

304 pointer_col = pointer_row,

305 dist_min = distance[pointer_row] [pointer_col];

306 for(i =0; i <= (mask-1); i++)

307 {

308 for(j =0; j <= (mask-1); j++)

309 if(distance[i][j] <= dist_mn)

1.z
1.z
MY_NUI

=



310 {

311 dist_mn = distance[i][j];

312 pointer_row = i;

313 pointer_col =j;

314 }

315 }

316 pqg.east = west + (junp_x-mask/2+poi nter_col +0.5) *col s_res;
317 pqg.north = sout h+(n_rows-junp_y+nmask/ 2- poi nter_row 0.5) *rows_res;
318 pg.z = pod[pointer_row [pointer_col]. z;

319 G free(pod);

320 G free(distance);

321 n_el ++;

322 direction. east = pg. east-pov. east;

323 direction.north = pq.north-pov. north;

324 direction.z = pq.z-pov. z;

325 versor_d. east = direction.east/dist_mn;

326 versor_d.north = direction.north/dist_mn;

327 versor_d.z = direction.z/dist_mn;

328 versor_r.east = -versor_d. east;
329 versor_r.north = -versor_d. north;
330 versor_r.z = -versor_d. z;

331 /*finding val ues of slope and aspect*/

332 junmp_x_g = floor((pg.east-west)/cols_res);

333 junmp_y_g = n_rows-ceil ((pg.north-south)/rows_res);

334 G get_raster_row (slope_fd, slope_raster, junp_y_ g, slope_type);
335 pointer = slope_raster;

336 pointer = G.incr_void_ptr(pointer, junp_x_g*G raster_size(slope_type));
337 switch(sl ope_type)

338 {

339 case CELL_TYPE: slope = (double)*((CELL *)pointer);break;

340 case FCELL_TYPE: slope = (double)*((FCELL *)pointer); break;

341 case DCELL_TYPE: slope = (double)*((DCELL *)pointer); break;

342 default: slope = MY_NULL;

343 }

344 G get_raster_row aspect_fd, aspect_raster, junp_y_g, aspect_type);
345 pointer = aspect_raster;

346 pointer = G.incr_void ptr(pointer, junp_x_ g * Graster_size(aspect_type));
347 switch(aspect_type)

348 {

349 case CELL_TYPE: aspect = (double)*((CELL *)pointer);break;

350 case FCELL_TYPE: aspect = (double)*((FCELL *)pointer); break;

351 case DCELL_TYPE: aspect = (double)*((DCELL *)pointer); break;

352 default: aspect = MY_NULL;

353 }

354 /*converting sl ope and aspect in greadient conponents*/

355 if(slope == 0. && aspect == 0.)

356 {

357 gradient.north = 0.;

358 gradient.east = 0.;

359 }

360 if((aspect >= 0. && aspect < 90.) || (aspect > 270. && aspect <= 360.))
361 {

362 gradi ent.east = tan(Pl*sl ope/180)/sqrt(1+pow(tan(Pl*aspect/180),2.));
363 gradient.north = tan(Pl *aspect/ 180)*gradi ent . east;

364 }

365 if(aspect == 90.)

366 {

367 gradi ent.east = 0.;

368 gradient.north = tan(Pl *sl ope/ 180);

369 }

370 if(aspect > 90. && aspect <= 180.)

371 {



372
373
374
375
376
377
378

gradi ent.east = -tan(Pl*sl ope/180)/sqrt (1+pow(tan(Pl*(1-aspect/180)),2.));
gradi ent.north = tan(Pl *(1-aspect/180))*fabs(gradi ent. east);

}

i f(aspect > 180. && aspect < 270.)

{

gradi ent. east = -tan(Pl*sl ope/ 180)/sqrt (1+pow(tan(Pl*(1l+aspect/180)),2.));
gradi ent.north = -tan(Pl *(1+aspect/ 180))*fabs(gradi ent.east);

379 }

380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419

i f(aspect == 270.)

{

gradi ent.east = 0.;

gradi ent.north = -tan(Pl *sl ope/ 180);

}

gradient.z = 1.;

norma = sqrt(pow gradi ent. east, 2.)+pow(gradient.north, 2.)+pow(gradient.z,2.));
versor_g.east = gradi ent.east / norng;

versor_g.north = gradient.north / norng;

versor_g.z = gradient.z / norng;

/*finding the normal projection*/

nor el _di stance = dist_m n*fabs((versor_r.east*versor_g. east+versor_r.north*versor_g. nort h+versor_r.z*ver.
PN. east = pov. east-normal _di stance*g_wt *versor _g. east;

PN. north = pov. north-nornmal _di stance*g_wt *versor_g. north;

PN.z = pov. z-nornal _di stance*g_wt *versor_g. z; ;

/*conputing the maxi mum sl ope direction (normal to gradi ent scoping the maxi num sl ope)*/
if(versor_g.z == 1.)

{

ms.east = 1.;

m s. nort h=0. ;

ms.z= 0.;

}

el se

{

ms.east = - gradient. east;

ms.north = - gradient.north;

ms.z = - (gradi ent.east*ms. east+gradi ent.north*m.s.north)/gradient. z;

}

norma_ms = sqrt(pow(ms. east,2.)+pow(ms.north,2.)+pow(ms.z,2.));

versor_n.east = ms.east/norna_ms;

versor_n.north = ms. north/norma_ms;

versor_n.z = ms.z/norna_ms;

/*matching the cell on DTM where the projection falls*/

cell _on_dtm= (n_rows-ceil ((PN. north-south)/rows_res))*n_col s+ceil ((PN. east-west)/cols_res);
x_cell =(floor(PN. east/cols_res)+ 0.5)*col s_res;

y_cell =(floor(PN. north/rows_res)+ 0.5)*rows_res;

}

whil e(pov.z !'= ptp.2z);

wite_line(&ector_nap_new, ptp.east, ptp.north, ptp.z, PN east, PN north, PNz, |line, normal _distance, ce
printf(" done\n");

420 }

421
422
423
424
425
426
427
428
429
430
431
432
433

db_cl ose_dat abase_shut down_dri ver (driver);
Vect _bui | d(&vector _nmap_new, stdout);
Vect _cl ose(&vector_map_ol d);

Vect _cl ose(&vector_map_new) ;

G free(dtmraster);

G free(sl ope_raster);

G free(aspect_raster);

G free(pointer);

G close_cel | (dtm fd);

G cl ose_cel | (sl ope_fd);

G cl ose_cel | (aspect _fd);

return EXI T_SUCCESS;

}



